skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Stofan, Marie"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Salinization and eutrophication are nearly ubiquitous in watersheds with human activity. Despite the known impacts of the freshwater salinization syndrome (FSS) to organisms, we demonstrate a pronounced knowledge gap on how FSS alters wetland biogeochemistry. Most experiments assessing FSS and biogeochemistry pertain to coastal saltwater intrusion. The few inland wetland studies mostly add salt as sodium chloride. Sodium chloride alone does not reflect the ionic composition of inland salinization, which derives from heterogeneous sources, producing spatially and temporally variable ionic mixtures. We develop mechanistic hypotheses for how elevated ionic strength and changing ionic composition alter urban wetland sediment biogeochemistry, with the prediction that FSS diminishes nutrient removal capacity via a suite of related direct and indirect processes. We propose that future efforts specifically investigate inland urban wetlands, a category of wetland heavily relied on for its biogeochemical processing ability that is likely to be among the most impacted by salinization. 
    more » « less